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Abstract

The Experiment on Timing Ranging and Atmospheric Soundings, EXTRAS, was conceived jointly

by the European Space Agency, ESA, and the Russian Space Agency, RSA. It is also designated the

'Hydrogen-maser in SpacelMeteor-3M project'. The launch of the satellite is scheduled for early

1997. The package, to be flown on board a Russian meteorological satellite includes ultra-stable

frequency and time sources, namely two active and auto-tuned hydrogen masers. Communication

between the on-board hydrogen masers and the ground station clocks is effected by means of a

microwave link using the modified version for time transfer of the Precise Range And Range-rate

Equipment, PRARETIME, technique, and an optical link which uses the Time Transfer by Laser

Link, T2L2, method. Both the PRARETIME and T2L2 techniques operate in a two-directional

mode, which makes it possible to carry out accurate transmissions without precise knowledge of the

satellite and station positions.

Due to the exceptional quality of the on-board clocks and to the high performance of the commu-

nication techniques with the satellite, satellite clock monitoring and ground clocks synchronization

are anticipated to be performed with uncertainties below 0.5 ns (1 a). Uncertainty budgets and

related comments are presented.

INTRODUCTION

The Experiment on Timing Ranging and Atmospheric Sounding, EXTRAS, was conceived

jointly by the European Space Agency, ESA, and the Russian Space Agency, RSA. It is also

designated the "Hydrogen-Maser in Space/Meteor-3M project", and is scheduled for early

1997. The experiment calls for ultra-stable frequency and time sources, two active and auto-

tuned hydrogen masers, to be flown on board a Russian meteorological satellite, Meteor-3M.
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Communication between the on-board hydrogen masers and the ground stations is effected by a

microwave link using the Precise Range And Range-Rate Equipment modified for time transfer,

PRARETIME, technique, and an optical link which uses the Time Transfer by Laser Link,

T2L2, method. The combination of ultra-stable time and frequency sources with precise and

accurate tracking equipment should help to solve a number of scientific and applied problems

in the fields of navigation, geodesy, geodynamics and Earth atmosphere physics. It should also

allow timing measurements with accuracies never reached before.

ON-BOARD HYDROGEN MASERS

Compared with other atomic frequency standards, passive hydrogen masers offer improved

short-term stabilityIll. They are generally used as short-term references in timing laboratories,

but cannot serve as time-keepers because of the huge drift they generate over averaging times

longer than several hours. However, recent developments of active hydrogen masers operating

according to specific auto-tuning modes for the cavity reduce frequency drift while causing

a negligible degradation of the short-term stabilityl21. This type of hydrogen maser already

contributes, on the ground, to short-term internal time comparisons and to long-term time

keeping in national timing centres concerned with time metrology.

Rubidium and c_esium clocks are currently used in navigation systems, for example in the Global

Positioning System, GPS, where all Block II satellites are equipped with c_esium standards. To

date, no hydrogen maser has ever been flown with the exception of a hydrogen maser belonging

to the Smithsonian Astrophysics Observatory which was sent into parabolic flight in 1976131.

Space hydrogen masers are also planned as fiiture on-board clocks for the Russian GLObal

NAvigation Satellite System, GLONASS, in order to improve the short-term stability of the

flying standards.

The active attto-tuned hydrogen masers scheduled for flight on Meteor-3M are a Russian-

designed hydrogen maser, proposed by the Institute of Metroiogy for Time and Space, VNI-

IFTRII, Mendeleevo (Russia), and a Swiss Space Hydrogen Maser, SHM, proposed by the

Observatoire de Neuch_tel, ON, Neuch_tel (Switzerland). These two units are of a weight

(_< 50 kg), volume (_< 0.1 m 3) and power consumption (_< 60 W) compatible with an on-board

installation. In addition they will be compared continuously and are interchangeable. Their

short-term stability is characterized by the Allan deviation given in Table 1.

Averaging time Allan Deviation

r/s

10 2.1 x 10 -14

100 5.1 x 10 -Is

1000 2.1 x 10 -is

10000 1.5 x 10 -1'_

100000 < 1 x 10-14

Table 1: Allan deviation cry(T), versus the

averaging time T, of the Space Hydrogen

Maser (SHM) developed by the Obsevvatoire

de Neuchdtel, ON, Neuchdtel (Switzerland),

for flying on boaTxt Meteov-3M. Numbers are

p_vvided by Dr G. Busea, of the ON, in his

proposal for EXTRAS (1993).

The first consequence is that the comparison of ground clocks with the on-board hydrogen
maser ensures access to a stable and slowly drifting time scale for synchronization of local
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time scalesusedfor real-time datingof eventson the Earth. In a complementaryprocess,the
time scaleto be deliveredby the on-board clock canbe closelysteeredin real-time on any
referencetime scale,suchasa local representationof UTC, UTC(k), kept by laboratoryk: for
this purpose,it is sufficientto distribute, in the satellite message,a time correction between
the on-board and ground time scales.The experimentEXTRASthus servesall the fimctions
of time dissemination.

Thespecificationsof Table1 haveanother impacton time metroiogywhenflying suchhydrogen
maserson Meteor-3M. This is linked to particularfeaturesof the satelliteorbit: its polar orbit
and its altitude, of order 1000km, lead to a period of revolution around the Earth of order
T = 100 rain, and to possible observation of the satellite at least four times a day from any

location on the Earth. The total error (1 a) accumulated by the on-board hydrogen maser

during one revolution can be estimated as[41:

(1)

which leads to the value 12 ps. If two observations are distant by 3 hours, the error (1 a)

accumulates to less than 50 ps.

It follows that comparisons between remote clocks on the Earth can be performed by differential

observation of the time scale provided by the on-board hydrogen maser when it is visible from

the stations. This is the clock transportation method, and there is no need to organize common

views, as is done with GPS and GLONASS, the uncertainty caused by the on-board clock

during its flight between the two stations being typically of order 50 ps.

To conch|de, EXTRAS provides a means of time transfer based upon the transportation, via

satellite, of an ultra-stable clock able to keep its time very precisely throughout the period of

transportation. This time transfer method, the simplest imaginable, is thus of major interest to

the timing commtmity. Full advantage of the qualities of hydrogen masers on board Meteor-3M

can be taken only if very accurate methods are used to ensure the connection between observing

stations on the ground and the spacecraft. Specific features of two-direction links, such as via

PRARETIME and T2L2 are discussed in the following sections.

PRARETIME: PRECISE RANGE AND RANGE-RATE EQUIP-

MENT, MODIFIED VERSION FOR TIME TRANSFER

The Precise Range And Range-Rate Equipment, PRARE, is a high precision and fully automated

facility for microwave link between clocks on board a satellite and ground stations. Its primary

fimction consists of range and range-rate measurements, but a modified version of PRARE

devoted to time transfer, PRARETIME, has also been developped. The modification concerns

some hardware details and an additional time interval measurement at the ground station site.

The PRARE equipment operates with a down-and-up link in the X-band (8489 GHz for

down-link and 7225 GHz for up-link) between the ground and the satellite, together with a

down-link in the S-band (2248 GHz)IS, _, 71. The PRARE X-band up-link exists only if the

ground station is equipped with a ground transponder and its 60 cm parabolic dish. In this
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case,the only one consideredin this paper, the PRARE systemoperatesin a two-waymode,
which canbe usedfor timing purposessuchas:

• time comparisonsbetweenone ground clock and the on-board clock: this is known as
satelliteclockmonitoring,and

• time comparisonsbetween two ground clocks through transportationof the on-board
clock: this is knownasgroundclocksynchronization.

Timing applications through EXTRAS via PRARETIME

Satellite clock monitoring

A signal is emitted by the satellite S and retrans-

mitted immediately by the Earth station E. The

time interval tsE between emission and reception

on board the satellite, ts_ = tl- to, is recorded.

The time difference between the clocks At is given

by[81:

at = + 6. (2)

With T1 and T2 the individual transmission times for

the down-link and the up-link, the time correction
5 is written as:

6 = (711 - T2)/2, (3)

which may be expressed astSl:

5 = [re,d -- 5c,i, + 6i,d -- 5_,u1/2 -- v_.(to) ' REs(to)c -2 + O(c-3), (4)

where 5c and dii. are external (ionospheric and tropospheric) and internal (cables, ...etc) delays

respectively, subscripts 'd' and 'u' refer to the down- and up-links, Res(t0 ) is the station to

satellite vector at date to, vs is the satellite velocity in a geocentric inertial frame and c is the

speed of light in vacuum.
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Ground clock synchronization

The satellite S emits signals to each ground

station A and B which are immediately re-

transmitted to the satellite. Three time in-

tervals are recorded by the satellite:

• ts = t3- t0, the time elapsed between

the emission of the two signals,

• tsa = t2-to and ts_ = t4-t3, the times

elapsed between the emission and re-

ception on-board the satellite of the

signals received in stations A and B.

The time difference between the ground clocks At, is given bylSl:

At, = (tsB - tSA)/2 + ts; Jl- 6.

The time correction 6 is written as:

(5)

6 = [(T3 - T4) - (711 - T.2)1/2, (6)

where 7'1, T2, 7"3, and 7"4 are the individual transmission times for the down-links and the

up-links.

Using (4), 6 is expressed as:

= [_e,d -- 6c,u -4- _i,d -- _i,u]B/2 -- [_e,d -- _e,u -_- _i,d -- _i,u]A/2 --

vs(t3) • RBS(t3)C -2 + VS(t0) " RAS(tO)C -2 -'1"-O(c-3), (7)

in a notation following that of (4).

In (4) and (7) no range estimations are involved in terms of order c -1, which is typical of

a two-way method. Terms of order c -2 can amount to 300 ns and can be calculated at the

picosecond level even with a poor knowledge of satellite ephemerides and velocity (accuracies

of these quantities should be of order 12 m and 0.02 m/s respectively). Terms in c -3 contribute

a few picoseconds.

It follows that the time comparison value between the ground clock and the on-board clock, or

between the two ground clocks, can be deduced from measurements of time intervals on-board

the satellite, and from the estimations of differential delays in the up- and down-paths. No

accurate estimation of the range between the satellite and the station is needed.

It is important to note that tropospheric delays totally cancel in the tip- and down-paths because

the troposphere is a non-dispersive medium which yields the same delay for the PRARE tip
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and down carrier frequencies. In contrast, the ionosphereis a dispersivemedium and the
correspondingdifferential delaysdo not cancelin (4) and (7). The up- and down-linksfrom
the stationsto the satellitedo not necessarilypassthroughthe sameinternalelectroniccircuits
and cables,so internal differential delaysremain in (4) and (7).

Sources of uncertainties for timing applications through EXTRAS

via PRARETIME

The uncertainties affecting timing observations come from the on-board hydrogen-maser, signal

transmission through the atmosphere, and the equipment which is used to emit and transmit the

signals. All the uncertainties given in the following are 1 cr estimations: they are summarized
in Table 2.

Uncertainty due to tile on-board hydrogen maser

The uncertainty brought by the on-board hydrogen maser is deduced from its stability. This

is negligible for the quantities tSE, tSA, andtsB and thus has no impact on satellite clock

monitoring. It must be taken into account, however, for the quantity ts since this depends on

the time duration which separates the observations of the satellite from the two stations being

compared. A conservative estimate is of order 50 ps (1 a).

Uncertainty oil the atmospheric delay of the signal

The frequency separation between the S-band and X-band PRARE down-links makes it

possible to measure the ionospheric delay of the signal. One expects a very low level of

uncertainty, of order 20 ps (1 or), for the measurement of the difference between down and

up ionospheric delays. For ground clock synchronization, this uncertainty appears twice (in

quadratic).

Uncertainty on the calibration of equipment

The on-board payload, the Earth stations, and the PRARETIME modems and counters must

be very carefidly calibrated before launch. One expects an uncertainty in the calibration of

order 50 ps (1 a) for each of these elements. These uncertainties appear twice (in quadratic) for

ground clock synchronization. However, the on-board payload is known to remain very stable

between adjacent observations. It follows that the corresponding uncertainty partly disappears

for ground clock synchronization. One estimates a total residual uncertainty of 20 ps (1 a) for

this particular case.

The uncertainty associated with PRARETIME modems and counters arises from error sources

such as instrumental delays (temperature, calibration of electronic components, (:/No influence,

...etc), timer resolution, multipath transmission, and problems related to the antenna phase

centre. It may not be possible to separate this uncertainty from those coming from the on-board

payload and the Earth station calibrations.
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Uncertainty due to the links to local 1 pps signals

The PRARETIME technique only uses the high frequency (5 MHz) signals from the on-board

and ground clocks. Time transfer, however, usually takes place between time scales which take

the form of a series of local signals at 1 pulse per second, 1 pps. It is thus necessary to take

into account uncertainties arising in the links to the local 1 pps signal. Passing from 5 MHz

signals to 1 pps signals requires cables and electronic circuits for frequency division and pulse

formation. It generates uncertainties which are generally estimated to be of order 300 ps (1 a).

In the PRARETIME system, no 1 pps signal is physically available on board the satellite, so

this class of uncertainty arises only in the timing circuitry of the ground stations.

Anticipated uncertainty budgets for timing applications through EXTRAS via

PRARETIME

The anticipated uncertainty budgets for satellite clock monitoring and ground clock synchro-

nization are given in Table 2. Those parts of uncertainty arising from the method itself and

from the links to the local 1 pps signal are shown separately. The uncertainty of the method

itself amounts to 89 ps (l a) for satellite clock monitoring, and ll7 ps (1 a) for ground clock

synchronization. The total uncertainties of 313 ps and 440 ps (1 a), largely dominated by uncer-
tainties due to local links to the 1 pps signals in the ground stations, are well below 0.5 ns (l a),

which represents a major improvement for time metrology. In addition, the PRARETIME

instrument makes it possible to disseminate any time scale maintained on the ground thanks to

additional information contained in the S-band downward signal. The achievable uncertainty

of this particular timing mode is to be further investigated.

T2L2: TIME TRANSFER BY LASER LINK

The Time Transfer by Laser Link, T2L2, technique provides an optical time link between the

on-board hydrogen masers and ground clocks. It may be seen as a continuation of the LAser

Synchronization from Satellite Orbit (LASSO) technique, which was successfidly carried out
between the McDonald Observatory in Texas, USA, and the Observatoire de la C6te d'Azur,

France, in 1992, through the geostationary satellite Meteosat-P2. Very few LASSO time

comparison points were obtained during this experiment[9, 101. They show a precision of order

200 ps, which is a major improvement over other methods, but, unfortunately no accuracy
evaluation has been made so far now. The LASSO experiment also showed the possibility

of monitoring the on-board clock with a precision of order 50 ps. This could serve time

dissemination purposes, but again the corresponding uncertainty has not yet been evaluated.

The specific and principal difficulties of the LASSO experiment are:

• the rather poor stability of the oscillator on board Meteosat-P2. The consequence is that

the stations to be synchronized must both shoot the laser onto the satellite within a time

window equivalent of common-view conditions.

• the weather conditions must be excellent to avoid excessive light dissipation which prevents

the ground observer from counting an adequate number of return photons.

133



Problemswith on-board oscillatorsshouldlargelybe resolvedusingT2L2, becauseultra-stable
sourcesareused. In addition,asthe Meteor-3M satelliteorbit is far loweraltitudethan that of
thegeostationaryMeteosat-P2satellite,the effectsof weatherconditionsshouldbe lesssevere.

The T2L2 equipmentcaneasilybe installed on board the satellite. The princial elementsin
this equipmentare a light detector linked to an event timer, and an Optical Retroreflector
Array (ORA). The Earth sitesconcernedwith this experimentrequire to haveat their disposal
facilities for high-powerpulsed-lasershooting,togetherwith a telescope.Very few sitesmeet
these requirementsand it may be necessaryto increasethe numberof laserstationsto take
fidl advantageof the EXTRASexperiment.

Timing applications through EXTRAS via T2L2

The T2L2 time transfer system can serve satellite clock monitoring and remote ground clock syn-

chronization according to schemes symmetrical to those already presented for the PRARETIME

technique.

Satellite clock monitoring

A signal is emitted by the Earth station E With 7'1 and

and reflected immediately by the satellite S.
The time interval t--ES between emission

and reception at the station, tzs = tl - to, is
recorded. The time difference between the

clocks At is given byISl:

_xt= tEs/2 + 6. (8)
T2 the individual transmission times for the up-link and

the down-link, the time correction 6 is written as:

Using (4), this is expressed as:

= (T1- T_)/2. (9)

6 = [6_,_- _,_]/2 + v_(t0) •R._(t0)c -2 + O(c-3),

with notations similar to that of (4).

(lo)
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Ground clock synchronization

The time correction 6 is written as:

Laser pulses are emitted from the ground

stations A and B, and reflected by the satel-

lite S. Three time intervals are recorded:

ts = t3- tl, the time elapsed be-

tween the reflection of the two signals

(recorded on the satellite),

tAS ---- t2 -- tO and tBs = t4 - to - At,

the times elapsed between the emission

and reception (recorded in stations A

and B).

The time difference between the ground

clocks At is given by[Sl:

At = (tAN -- I,BS)/2 "}- t,5, q'- 5. (11)

= [(Ta - T2) - (Ta - T4)l/2, (12)

where 7'1, 7'2, 7'3, and Ta are the individual transmission times for the up-links and the

down-links.

Using (10), this is expressed, with a notation similar to that of (4), as:

6 = [_5_,l,--6i,d]A/2--[6i,u--6i,d]B/2+V a (t0)'RA_, (to)C--2--VB (t0+At)'RR_ •(to+At)c-2+O(c-3)" (13)

In (10) and (13) no range estimations are involved in terms of order c -a, which is again typical

of a two-way method. Terms of order e -2 may amount to 20 ns and can be calculated at the

picosecond level even with a poor knowledge of satellite-station ranges and station velocities
in an inertial frame (accuracies in these quantities should be of order 100 m and 0.02 m/s

respectively). Terms in c -3 contribute a few picoseconds.

It follows that the time comparison value between the ground clock and the on-board clock, or

between the two ground clocks, can be deduced from measurements of time intervals on-board

the satellite and in the ground stations, and from the estimations of differential delays in the

up- and down-paths. No accurate estimation of the range between the satellite and the station

is needed.

It is important to note that atmospheric delays totally cancel in (10) and (13) since the T2L2 up

and down frequencies are equal. The up- and down-links from the stations to the satellite do

not necessarily pass by the same internal electronic circuits and cables, so internal differential

delays remain in (10) and (13).
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Sources of uncertainties for timing applications through EXTRAS

via T2L2

The uncertainties affecting timing observations come from the on-board hydrogen-maser, and

from the different equipment which is used for emitting and reflecting the optical pulses.

Similar comments apply to the estimation of uncertainties as were given for PRARETIME, but

two points should be noted:

• no uncertainties are to be taken into account for atmospheric delays, and

• only counters, and no modems, are used in the T2L2 technique, which reduces the

corresponding uncertainty to 10 ps (1 a).

Anticipated uncertainty budgets for timing applications through
EXTRAS via T2L2

The anticipated uncertainty budgets are given in Table 3 for satellite clock monitoring and

ground clock synchronization through EXTRAS via T2L2. Again, the parts of the uncertainty

coming from the method itself and from the links to the local 1 pps signals are separated. One

obtains an uncertainty for the method of 71 ps (1 cr) for satellite clock monitoring, and 90 ps

(1 _r) for ground clock synchronization. The total uncertainties of 308 ps and 434 ps (1 or) are

again largely dominated by terms arising from the local links to the 1 pps signals in the ground
stations.

To conch|de, the estimates of the T2L2 anticipated tmcertainty budgets are very close to those

obtained with PRARETIME: the main uncertainty is not due to the method itself, and the

overall accuracy of time transfer is characterized by an uncertainty well below 0.5 ns (1 or).

In terms of the method itself, T2L2 is slightly more accurate than PRARETIME and may

be considered as the reference technique. In addition, studies about the calibration of the

on-board payload are being carried out, which may show that the tentative estimate of the

corresponding uncertainty, which is given in Table 3, is too pessimistic. Unfortunately, however,

T2L2 depends on clear weather and on specific laser equipment of a kind not available in many
time laboratories.

CONCLUSIONS

The EXTRAS experiment could provide a time transfer method based on satellite transportation

of ultra-stable hydrogen masers. Two-way connections with the satellite are ensured by two

techniques, PRARETIME and T2L2, both potentially accurate at a level about 300 ps (1 cr)

and both able to provide satellite clock monitoring and ground clocks synchronization. This

could represent a very interesting improvement in the accuracy of time transfer methods when

compared to GPS common views, achieved with an uncertainty of order 2 ns (1 a) over short

distances (< 1000 kin) and 5 ns (1 a) over long distances (>_ 5000 km), and to Two-Way

Satellite Time Transfer via geostationary satellite, for which the best accuracy achieved is at

present 1.7 ns (1 _r). This would be of major interest for time metrology, in particular for

comparison of future clocks designed for frequency uncertainties of some parts in 10 TM.
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"PaNe 2: Anticipated uncertainty budgets for satellite clock monitoring and ground clock

synchronization through EXTRAS via PRARETIME. All uncertainties are in picoseconds and

correspond to a 1 sigma statistical analysis. No uncertainties on time comparison arise from

range estimation.

Uncertainty source

Range

Hydrogen maser

Atmospheric delay

On-board payload
Earth station

Modems & counters

Method accuracy

Ground link to 1 pps

Satellite clock

monitoring

20

50

50

50

89

300

Ground clocks

synchronization
0

50

20v_

20

50v 
50v_

117

300v_

Total accuracy 313 440

Table 3: Anticipated uncertainty budgets for satellite clock monitoring and ground clocks

synchronization through EXTRAS via T2L2. All uncertainties are in picoseconds and correspond

to a 1 sigma statistical analysis. No uncertainties on time comparison arise from range estimation

and atmospheric delays.

Uncertainty source Satellite clock Ground clocks

monitoring synchronization

Range 0 0

Hydrogen maser 0 50

Atmospheric delay 0 0

On-board payload 50 20

Earth station 50 50v'_

Counters 10 10v/2

Method accuracy 71 90

Ground link to 1 pps 300 300x/2

Total accuracy l 308 [ 434
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QUESTIONS AND ANSWERS

SIGFRIDO M. LESCHIUTTA: I was saying that we shall aim to the 10 ps resolution. So,

this experiment is aiming to 300 ps.

CLAUDINE THOMAS (BIPM): Maybe I must add that funding is not yet voted for this

experiment. So, I'm not so sure it will happen, but let's hope.
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